Asteroseismology: a method for characterizing exoplanet host stars

Global oscillation properties

Kepler asteroseismic survey

Scaling relations

Model grid-based methods

Fitting the frequencies

Kepler-21: a love story

- 1.64±0.04 R_e planet in a 2.8-day orbit around an oscillating F subgiant
- Asteroseismic target prior to exoplanet discovery, expanded collaboration
- radius (1.86±0.04 R_☉), mass (1.34±0.06 M_☉), age (2.84±0.34 Gyr)

Kepler-22: habitable super-Earth

- 2.38±0.13 R_e planet with 290-d orbit in habitable zone of G5 host star
- Spectroscopy and global oscillation properties for grid-based modeling
- radius (0.98±0.02 R_☉), mass (0.97±0.06 M_☉), age (~4 Gyr)

Kepler-36: formation puzzle

Kepler-36: formation puzzle

Kepler-37: smallest exoplanet

- 0.3 / 0.74 / 2.0 R_e planets in 13 / 21 / 39 day orbits (no TTVs yet detected)
- radius $(0.77\pm0.02 R_{\odot})$, mass $(0.80\pm0.04 \text{ M}_{\odot})$, age (~6 Gyr)
- Innermost planet is smaller than Mercury (similar to size of Moon)

Kepler-68: intermediate density

- 2.31 / 0.95 R_e planets in 5.4 / 9.6 day orbits, third planet 0.95 M_J from RVs
- Density of the innermost planet is between that of ice giants and the Earth
- radius (1.24±0.02 R_☉),
 mass (1.08±0.05 M_☉),
 age (6.3±1.7 Gyr)

Gilliland et al. (2013, submitted)

Kepler-50 & 65: obliquities

Chaplin et al. (2013, submitted)

KOI catalog: stellar constraints

Photometry -vs- Spectroscopy

$$\sigma(a) \propto \sigma_{Noise} \cdot T^{-1/2}$$

$$\sigma(f) \propto \sigma_{Noise} \cdot a^{-1} \cdot T^{-1/2}$$

Recommendations

- Engage asteroseismology community in future exoplanet missions from the start, using implicit European subsidy while supporting US team.
- Avoid Participating Scientist program, allocate additional funding through Guest Observer and Archival Data Analysis opportunities instead.
- Leverage small telescope networks like SONG, support ground-based asteroseismology of the brightest targets from extended RV campaigns.